Strong Geometrical Effects in Submillimeter Selective Area Growth and Light Extraction of GaN Light Emitting Diodes on Sapphire.
نویسندگان
چکیده
Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. We report here detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates and utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2" sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO2. We show that the mask opening diameter leads to as much as 4 times increase in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.
منابع مشابه
Less strained and more efficient GaN light-emitting diodes with embedded silica hollow nanospheres
Light-emitting diodes (LEDs) become an attractive alternative to conventional light sources due to high efficiency and long lifetime. However, different material properties between GaN and sapphire cause several problems such as high defect density in GaN, serious wafer bowing, particularly in large-area wafers, and poor light extraction of GaN-based LEDs. Here, we suggest a new growth strategy...
متن کاملThermally enhanced blue light-emitting diode
Articles you may be interested in Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer Appl. Raman and emission characteristics of a-plane InGaN/GaN blue-green light emitting diodes on r-sapphire substrates J. Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting d...
متن کاملFish scale terrace GaInN/GaN light-emitting diodes with enhanced light extraction
Non-planar GaInN/GaN light-emitting diodes were epitaxially grown to exhibit steps for enhanced light emission. By means of a large off-cut of the epitaxial growth plane from the c-plane (0.06 to 2.24 ), surface morphologies of steps and inclined terraces that resemble fish scale patterns could controllably be achieved. These patterns penetrate the active region without deteriorating the electr...
متن کاملEffects of LED Light on Seed Emergence and Seedling Quality of Four Bedding Flowers
Recently much attention has been paid by horticulturists to light-emitting diodes as a new source of economical and spectral-selective light. The reason is mainly coming from their versatility in handling and mounting, long working time, wattage use efficiency and lower heat production. In this study we examined their potential in promoting seed germination and producing quality flower seedling...
متن کاملGaN-based Light Emitting Diode with Embedded SiO2 Pattern for Enhanced Light Extraction
The n-GaN layer of c-plane GaInN/GaN light emitting diodes (LEDs) on sapphire was modified to contain a pattern of SiO2 nanorods. This embedded pattern of 300 nm long rods and diameter of 200 400 nm was created by thermal agglomeration of a Ni mask layer and subsequent dry-etching. The light output power (LOP) and external quantum efficiency (EQE) of the resulting LEDs increased both by some 25...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Scientific reports
دوره 5 شماره
صفحات -
تاریخ انتشار 2015